
FLOW IN OPEN CHANNELS 



A broad coverage of topics in open-channel flow has been selected 
for this chapter. 

 

In this chapter open-channel flow is first classified and then the 
shape of optimum canal cross sections is discussed, followed by a 
section on flow through a floodway. The hydraulic jump and its 
application to stilling basins is then treated, followed by a 
discussion of specific energy and critical depth which leads into 
transitions and then gradually varied flow.  

 

Water-surface profiles are classified and related to channel control 
sections. In conclusion positive and negative surge waves in a 
rectangular channel are analyzed, neglecting effects of friction. 

 

The presence of a free surface makes the mechanics of flow in open 
channels more complicated than closed-conduit flow. The hydraulic 
grade line coincides with the free surface, and, in general, its 
position is unknown. 



For laminar flow to occur, the cross section must be extremely 
small, the velocity very small, or the kinematic viscosity extremely 
high.  

 

One example of laminar flow is given by a thin film of liquid 
flowing down an inclined or vertical plane. Pipe flow has a lower 
critical Reynolds number of 2000, and this same value may be 
applied to an open channel when the diameter D is replaced by 4R, 
R is the hydraulic radius, defined as the cross-sectional flow area of 
the channel divided by the wetted perimeter.  

 

In the range of Reynolds number, based on R in place of D, R = 
VR/v < 500 flow is laminar, 500 < R < 2000 flow is transitional and 
may be either laminar or turbulent, and R > 2000 flow is generally 
turbulent. 

 

Most open-channel flows are turbulent, usually with water as the 
liquid. The methods for analyzing open-channel flow are not 
developed to the extent of those for closed conduits. The equations 
in use assume complete turbulence, with the head loss proportional 
to the square of the velocity.  



CLASSIFICATION OF FLOW 

Open-channel flow occurs in a large variety of forms, from flow of 

water over the surface of a plowed field during a hard rain to the 

flow at constant depth through a large prismatic channel. It may be 

classified as steady or unsteady, uniform or nonuniform.  

 

Steady uniform flow occurs in very long inclined channels of 

constant cross section in those regions where terminal velocity has 

been reached, i.e., where the head loss due to turbulent flow is 

exactly supplied by the reduction in potential energy due to the 

uniform decrease in elevation of the bottom of the channel. 

 

The depth for steady uniform flow is called the normal depth. In 

steady uniform flow the discharge is constant and the depth is 

everywhere constant along the length of the channel.  



Steady nonuniform flow occurs in any irregular channel in which 

the discharge does not change with the time; it also occurs in 

regular channels when the flow depth and hence the average 

velocity change from one cross section to another. 

 

For gradual changes in depth or section, called gradually varied 

flow, methods are available, by numerical integration or step-by-

step means, for computing flow depths for known discharge, 

channel dimensions and roughness, and given conditions at one 

cross section.  

 

Unsteady uniform flow rarely occurs in open-channel flow. Unsteady 

nonuniform flow is common but difficult to analyze. Wave motion is 

an example of this type of flow, and its analysis is complex when 

friction is taken into account. 



Flow is also classified as tranquil or rapid. When flow occurs at low 
velocities so that a small disturbance can travel upstream and thus 
change upstream conditions, it is said to be tranquil flow (the Froude 
number F < 1). Conditions upstream are affected by downstream 
conditions, and the flow is controlled by the downstream conditions. 

 

When flow occurs at such high velocities that a small disturbance, such 
as an elementary wave is swept downstream, the flow is described as 
shooting or rapid (F > 1). Small changes in downstream conditions do 
not effect any change in upstream conditions; hence, the flow is 
controlled by upstream conditions.  

 

When flow is such that its velocity is just equal to the velocity of an 
elementary wave, the flow is said to be critical (F = 1). 

 

The terms "subcritical" and "supercritical" are also used to classify 
flow velocities. Subcritical refers to tranquil flow at velocities less than 
critical, and supercritical corresponds to rapid flows when velocities 
are greater than critical. 



Velocity Distribution 

The velocity at a solid boundary must be zero, and in open-
channel flow it generally increases with distance from the 
boundaries.  

 

The maximum velocity does not occur at the free surface but is 
usually below the free surface a distance of 0.05 to 0.25 of the 
depth.  

 

The average velocity along a vertical line is sometimes 
determined by measuring the velocity at 0.6 of the depth, but a 
more reliable method is to take the average of the velocities at 
0.2 and 0.8 of the depth, according to measurements of the U.S. 
Geological Survey. 



 BEST HYDRAULUIC CHANNEL CROSS SECTIONS 

Some channel cross sections are more efficient than others in that they 
provide more area for a given wetted perimeter.  

 

From the Manning formula it is shown that when the area of cross 
section is a minimum, the wetted perimeter is also a minimum, and so 
both lining and excavation approach their minimum value for the 
same dimensions of channel.  

 

The best hydraulic section is one that has the least wetted perimeter or 
its equivalent, the least area for the type of section.  

The Manning formula is 

 

(12.2.1) 

 

in which Q is the discharge (L3/T), A the cross-sectional flow area, R 
(area divided by wetted perimeter P) the hydraulic radius, S the slope 
of energy grade line, n the Manning roughness factor, Cm an empirical 
constant (L1/3/T) equal to 1.49 in USC units and to 1.0 in SI units. 



With Q, n, and S known, Eq. (12.2.1) can be written 

(12.2.2) 

 

in which c is known. This equation shows that P is a minimum 
when A is a minimum. 

To find the best hydraulic section for a rectangular channel (Fig. 
12.1) P = b + 2y and A = by. Then 

 

 

Differentiating with respect to y gives 

 

 

 

Setting dP/dy = 0 gives P = 4y, or since P = b + 2y, 

(12.2.3) 

 

Therefore, the depth is one-half the bottom width, independent of 
the size of rectangular section. 



To find the best hydraulic trapezoidal section (Fig. 12.2) A = by + 

my2, P = b + 2y√(1 + m2). After eliminating b and A in these Eq`ns 

and Eq. (12.2.2), 

(12.2.4) 

 

By holding m constant and by differentiating with respect to y, 

∂P/∂y is set equal to zero; thus 

(12.2.5) 

 

Eq. (12.2.4) is differentiated with respect to m, and ∂P/∂m is set 

equal to zero, producing 

 

 

And after substituting for m in Eq. (12.2.5), 

 

(12.2.6) 



Figure 1 Rectangular 

cross section 

Figure 2 

Trapezoidal cross 

section 



 Example 1 
 

Determine the dimensions of the most economical trapezoidal 

brick-lined channel to carry 200 m3/s with a slope of 0.0004.  

 

 Solution 

With Eq. (12.2.6), 

 

 

and by substituting into Eq. (12.2.1) 

 

 

or 

 

and from Eq. (12.2.6) b = 7.5 m. 



 STEADY UNIFORM FLOW IN A FLOODWAY 

A practical open-channel problem of importance is the computation of 
discharge through a floodway (Fig. 12.3). In general, the floodway is 
much rougher than the river channel and its depth (and hydraulic 
radius) is much less. The slope of energy grade line must be the same 
for both portions.  

 

The discharge for each portion is determined separately, using the 
dashed line of Fig. 12.3 as the separation line for the two sections (but 
not as solid boundary), and then the discharges are added to determine 
the total capacity of the system. 

Figure 3 

Floodway 

cross 

section 



Since both portions have the same slope, the discharge may be 
expressed as 

 

 

 

 or      ………              (1) 

 

in which the value of K is 

 
 

 

                                          

from Manning's formula and is a function of depth only for a given 
channel with fixed roughness. By computing K1 and K2 for different 
elevations of water surface, their sum may be taken and plotted against 
elevation.  

 

From this plot it is easy to determine the slope of energy grade line for 
a given depth and discharge from Eq. (1). 



4 HYDRAULIC JUMP; STILLING BASINS 

The relations among the variables V1, y1, V2, y2 for a hydraulic jump to 
occur in a horizontal rectangular channel are developed before. 
Another way of determining the conjugate depths for a given discharge 
is the F + M method.  

 

The momentum equation applied to the free body of liquid between y1 
and y2 (Fig. 12.4) is, for unit width (V1y1 = V2y2 = q), 

 

 

 

Rearranging gives 

(4.1) 

 

or                    (4.2) 

 

F is the hydrostatic force at the section and M is the momentum per 
second passing the section. 



By writing F + M for a given discharge q per unit width 

 

(4.3) 

 

a plot is made of F + M as abscissa against y as ordinate (Fig. 12.5) 

for q = 1 m3/s · m. Any vertical line intersecting the curve cuts it at 

two points having the same value of F + M; hence, they are 

conjugate depths.  

 

The value of y for minimum F + M is 

 

(4.4) 

 

This depth is the critical depth, which is shown in the following 

section to be the depth of minimum energy. Therefore, the jump 

always occurs from rapid flow to tranquil flow.  



Figure 4 Hydraulic jump in horizontal rectangular channel 

Figure 5 F + M curve for hydraulic jump 



The conjugate depth are directly related to the Froude number 

before and after the jump, 

 
(4.5) 

 

From the continuity equation 

 

 

or        

(4.6) 

From Eq. (12.4.1) 

 

 

Substituting from Eqs. (12.4.5) and (12.4.6) gives 
 

(4.7) 



The value of F2 in terms of F1 is obtained from the hydraulic-jump 

equation 

 

 

 

By Eqs. (4.5) and (4.6) 

 

(4.8) 

 

These equations apply only to a rectangular section. 

 

The Froude number is always greater than unity before the jump 

and less than unity after the jump. 



 Stilling Basins 

 
A stilling basin is a structure for dissipating available energy of flow 
below a spillway, outlet works, chute, or canal structure. In the 
majority of existing installations a hydraulic jump is housed within the 
stilling basin and used as the energy dissipator.  

 

This discussion is limited to rectangular basins with horizontal floors 
although sloping floors are used in some cases to save excavation. See 
table 12.1  

 

Baffle blocks are frequently used at the entrance to a basin to 
corrugate the flow. They are usually regularly spaced with gaps about 
equal to block widths. 

 

Sills, either triangular or dentated, are frequently employed at the 
downstream end of a basin to aid in holding the jump within the basin 
and to permit some shortening of the basin. 

 

The basin should be paved with high-quality concrete to prevent 
erosion and cavitation damage. No irregularities in floor or training 
walls should be permitted. 



Table 1 Classification of the hydraulic jump as an 

effective energy dissipator 



 Example 2  

 

A hydraulic jump occurs downstream from a 15-m-wide sluice gate. 
The depth is 1.5 m, and the velocity is 20 m/s. Determine (a) the Froude 
number and the Froude number corresponding to the conjugate depth, 
(b) the depth and velocity after the jump, and (c) the power dissipated 
by the jump. 

 

 Solution  

 (a) 

 

 

From Eq. (12.4.8) 

 

 

  

 (b) 



Then  

 

 

and 

 

 

 

 (c)  

Form Eq. (3.11.24), the head loss hj in the jump is 

 

 

 

The power dissipated is 



5. SPECIFIC ENERGY; CRITICAL DEPTH 

The energy per unit weight Es with elevation datum taken as the bottom of 
the channel is called the specific energy. It is plotted vertically above the 
channel floor, 

  

(5.1) 

                                                                                                   

A plot of specific energy for a particular case is shown in Fig. 12.6. In a 
rectangular channel, in which q is the discharge per unit width, with Vy = 
q,  

 

(5.2) 

 

It is of interest to note how the specific energy varies with the depth for a 
constant discharge (Fig. 7).  

 

For small values of y the curve goes to infinity along the Es axis, while for 
large values of y the velocity head term is negligible and the curve 
approaches the 450 line Es = y asymptotically. 



Figure 6 Example of 

specific energy 

Figure 7 Specific 

energy required for 

flow of a given 

discharge at various 

depths. 



The value of y for minimum Es is obtained by setting dEs /dy equal to zero, 
from Eq. (5.2), holding q constant, 

 

 

 

or 

(5.3) 

 

The depth for minimum energy yc is called critical depth. Eliminating q2 in 
Eqs. (5.2) and (5.3) gives 

 

(5.4) 

 

showing that the critical depth is two-thirds or the specific energy. 
Eliminating Es in Eqs. (5.1) and (5.4) gives 

  

(5.5) 

 

Another method of arriving at the critical condition is to determine the 
maximum discharge q that could occur for a given specific energy. The 
resulting equations are the same as Eqs. (5.3) to (5.5). 



For nonrectangular cross sections, as illustrated in Fig. 8, the 
specific-energy equation takes the form 

 

(5.6) 

 

in which A is the cross-sectional area. To find the critical depth 

 

 

 

From Fig. 8, the relation between dA and dy is expressed by 

 
 

 

in which T is the width of the cross section at the liquid surface. 
With this relation 
 

(5.7) 



The critical depth must satisfy this equation. Eliminating Q in Eqs. (5.6) 

and (5.7) gives 

 

(5.8) 

 

This equation shows that the minimum energy occurs when the 

velocity head is one-half the average depth A/T. Equation (5.7) may be 

solved by trail for irregular sections by plotting 

 

  

                                                                                    

Critical depth occurs for that value of y which makes f(y) = 1. 



Figure 8 Specific energy for a 

nonrectangular section 



 Example 3  
 

Determine the critical depth for 10 m3/s flowing in a trapezoidal 

channel with bottom width 3 m and side slopes 1 horizontal to 2 

vertical (1 on 2). 

 

 Solution 

 

Hence 

 

 

By trail  

 

 

 

The critical depth is 0.984 m. This trail solution is easily carried out by 

programmable calculator. 



6. TRANSITIONS 

At entrances to channels and at changes in cross section and bottom slope, 

the structure that conducts the liquid from the upstream section to the 

new section is a transition.  

 

Its purpose is to change the shape of flow and surface profile in such a 

manner that minimum losses result.  

 

A transition for tranquil flow from a rectangular channel to a trapezoidal 

channel is illustrated in Fig. 10. Applying the energy equation from section 

1 to section 2 gives 

 

(6.1) 

 

In general, the sections and depths are determined by other considerations, 

and z must be determined for the expected available energy loss E1 .  



Figure 10 Transition from rectangular channel to trapezoidal 

channel for tranquil flow 



 Example 5  

 

In Fig. 12.10, 11 m3/s flows through the transition; the rectangular 

section 2.4 m wide; and y1 = 2.4 m. The trapezoidal section is 1.8 m 

wide at the bottom with side slopes 1 : 1, and y2 = 2.25 m. Determine 

the rise z in the bottom through the transition. 

 

Solution 

 

 

 

 

 

 

Substituting into Eq. (6.1) gives 



The critical-depth meter is an excellent device for measuring discharge in 
an open channel. The relations for determination of discharge are worked 
out for a rectangular channel of constant width, Fig. 11, with a raised floor 
over a reach of channel about 3yc long.  

 

Applying the energy equation from section 1 to the critical section (exact 
location unimportant), including the transition-loss term, gives 

 

 

 

 

Since 

 

 

 

In which Ec is the specific energy at critical depth, 

 

 

(6.2) 



Figure 11 Critical-depth meter 



From Eq. (5.3)  

 

(6.3) 

 

 

In Eqs. (6.2) and (6.3) Ec is eliminated and the resulting equation solved 
for q, 

 

 

 

 

Since q = V1y1, V1 can be eliminated, 

 

(6.4) 

 

 

The equation is solved by trial. As y1 and z are known and the right-hand 
term containing q is small, it may first be neglected for an approximate q. 
A value a little larger than the approximate q may be substituted on the 
right-hand side. When the two q 's are the same the equation is solved.  

Experiments indicate that accuracy within 2 to 3 percent may be expected. 



 Example 6  

 

In a critical-depth meter 2 m wide with z = 0.3 m the depth y1 is 

measured to be 0.75 m. Find the discharge. 

 

 Solution 

 

 

As a second approximation let q be 0.50, 

 

 

 

And as a third approximation, 0.513, 

 

 

 

Then  



7 .GRADUALLY VARIED FLOW 

Gradually varied flow is steady nonuniform flow of a special class. The 
depth, area, roughness, bottom slope, and hydraulic radius change 
very slowly (if at all) along the channel.  

 

Solving Eq. (12.2.1) for the head loss per unit length of channel 
produces 

  

(7.1) 

 

                                       

in which S is now the slope of the energy grade line or, more 
specifically, the sine of the angle the energy grade line makes with the 
horizontal.  

 

Computations of gradually varied flow may be carried out either by 
the standard-step method or by numerical integration. Horizontal 
channels of great width are treated as a special case that may be 
integrated. 



 Standard-Step Method 

 
Applying the energy equation between two sections a finite distance ΔL 
apart (Fig. 12.12), including the loss term, gives 

 
(7.2) 

  

Solving for the length of reach gives 

 

(7.3) 

 

If conditions are known at one section, e.g., section 1, and the depth y2 
is wanted a distance ΔL away, a trial solution is required. The 
procedure is as follows: 

 

1. Assume a depth y2; then compute A2, V2. 

2. For the assumed y2 find an average y, P, and A for the reach and 
compute S. 

3. Substitute in Eq. (12.7.3) to compute ΔL.  

4. If ΔL is not correct, assume a new y2 and repeat the procedure. 



Figure 12  Gradually varied flow 



The standard-step method is easily followed with the programmable 
calculator if about 20 memory storage spaces and about 100 program 
steps are available. 

  

In the first trial y2 is used to evaluate ΔLnew. Then a linear proportion 
yields a new trial y2new for the next step; thus 

  

 

 

 or 

 

 

                                                       

A few iterations yield complete information on section 2. 



 Example 7  

 

At section 1 of a canal the cross section is trapezoidal, b1 = 10 m, m1 = 2, y1 
= 7 m, and at section 2, downstream 200 m, the bottom is 0.08 m higher 
than at section 1, b2 = 15 m, and m2 = 3. Q = 200 m3/s, n = 0.035. Determine 
the depth of water at section 2. 

 

 Solution 

 

 

 

 

 

 

Since the bottom has an adverse slope, i.e.. it is rising in the downstream 
direction, and since section 2 is larger than section 1, y2 is probably less 
than y1. Assume y2 = 6.9 m; then 
 
 

 

and 



The average A = 207 and average wetted perimeter P = 50.0 are used to 

find an average hydraulic radius for the reach, R = 4.14 m. Then 

 

 

 

Substituting into Eq. (7.3) gives 

 

 

   

A larger y2, for example, 6.92 m, would bring the computed value of 

length closer to the actual length. 



 Numerical Integration Method 
 

A more satisfactory procedure, particularly for flow through channels 
having a constant shape of cross section and constant bottom slope, is 
to obtain a differential equation in terms of y and L and then perform 
the integration numerically.  

 

When ΔL is considered as an infinitesimal in Fig. 12.12, the rate of 
change of available energy equals rate of head loss -ΔE/ΔL given by Eq. 
(12.7.1), or 

 

(12.7.4) 

 

in which z0 – S0L is the elevation of bottom of channel at L, z0 is the 
elevation of bottom at L = 0, and L is measured positive in the 
downstream direction.  

 

After performing the differentiation, 

 

(12.7.5) 



Using the continuity equation VA = Q leads to 

 

 

 

And expression dA = T dy, in which T is the liquid–surface width of the 

cross section, gives 

 

 

 

Substituting for V in Eq. (12.7.5) yields 

 

 

 

And solving for dL gives 

 

(7.6) 



After integrating, 

 

(7.7) 

 
 

In which L is the distance between the two sections having depths y1 

and y2. 

 

When the numerator of the integrand is zero, critical flow prevails; 

there is no change in L for a change in y (neglecting curvature of the 

flow and nonhydrostatic pressure distribution at this section ). Since 

this is not a case of gradual change in depth, the equations are not 

accurate near critical depth.  

 

When the denominator of the integrand is zero, uniform flow prevails 

and there is no change in depth along the channel. The flow is at 

normal depth. 



For a channel of prismatic cross section, constant n and S0, the 

integrand becomes a function of y only, 

 

 

                                             

and the equation can be integrated numerically by plotting F(y) as 

ordinate against y as abscissa.  

 

The area under the curve (Fig 13) between two values of y is the 

length L between the sections, since 



Figure 13 Numerical integration of equation for 

gradually varied flow 



 Example 8  

 

A trapezoidal channel, b = 3 m, m = 1, n = 0.014, S0 = 0.001, carries 28 

m3/s. If the depth is 3 m at section 1, determine the water-surface 

profile for the next 700 m downstream. 

        

 Solution 

To determine whether the depth increases or decreases, the slope of the 

energy grade line at section 1 is computed using Eq. (12.7.1) 

 

 

 

 

and 

 

 

Then  



Substituting into Eq. (5.7) the values A, Q and T = 9 m gives Q2T/gA3 = 

0.12, showing that the depth is above critical. With the depth greater 

than critical and the energy grade line less steep than the bottom of the 

channel, the specific energy is increasing.  

 

When the specific energy increases above critical, the depth of flow 

increases. Δy is then positive. Substituting into Eq. (7.6) yields 

 

 

 

The following table evaluates the terms of the integrand. 



The integral ∫F(y) dv can be evaluated by plotting the curve and taking the 
area under it between y = 3 and the following values of y. As F(y) does not 
vary greatly in this example, the average of F(y) can be used for each 
reach (the trapezoidal rule); and when it is multiplied by Δy, the length of 
reach is obtained. Between y = 3 and y = 3.2 

 

 

 

Between y = 3.2 and y = 3.4 

 

 

 

and so on. Five points on it are known, so the water surface can be plotted. 
A more accurate way of summing F(y) to obtain L is by use of Simpson's 
rule. 

The procedure used is equivalent to a Runge-Kutta second-order solution 
of a differential equation.  

 

A programmable calculator (about 20 memory storage spaces and 75 
program steps) was used to carry out this solution. By taking Δy = 0.1 m in 
place of 0.2 m, the length to y = 3.6 m is 0.6 m less. 



 Horizontal Channels of Great Width 

 

For channels of great width the hydraulic radius equals the depth; and 

for horizontal channel floors, S0 = 0; hence, Eq. (7.7) can be simplified.  

 

The width may be considered as unity; that is, T = 1, Q = q and A = y, R 

= y; thus 

(7.8) 

 

or, after performing the integration, 

 

(7.9) 

 

The computation of water-surface profiles with the aid of a digital 

computer is discussed after the various types of gradually varied flow 

profiles are classified. 



 Example 9  

 

After contracting below a sluice gate water flows onto a wide 

horizontal floor with a velocity of 15 m/s and a depth of 0.7 m. Find the 

equation for the water-surface profile, n = 0.015. 

 

 Solution 

From Eq. (7.9), with x replacing L as distance from section 1, where y1 

= 0.7, and with q = 0.7 × 15 = 10.5 m2/s. 

 

 

 

 

Critical depth occurs [Eq. (12.5.3)] at 



The depth must increase downstream, since the specific energy 

decreases, and the depth must move toward the critical value for 

less specific energy. The equation does not hold near the critical 

depth because of vertical accelerations that have been neglected in 

the derivation of gradually varied flow.  

 

If the channel is long enough for critical depth to be attained before 

the end of the channel, the high-velocity flow downstream from the 

gate may be drowned or a jump may occur.  

 

The water-surface calculation for the subcritical flow must begin 

with critical depth at the downstream end of the channel. 



8. CLASSIFICATION OF SURFACE PROFILES 

A study of Eq. (12.7.7) reveals many types of surface profiles, each 

with definite characteristics. The bottom slope is classified as 

adverse, horizontal, mild, critical, and steep; and, in general, the flow 

can be above the normal depth or below the normal depth, and it 

can be above critical depth or below critical depth. 

 

The various profiles are plotted in Fig. 12.14; the procedures used 

are discussed for the various classifications in the following 

paragraphs. A very wide channel is assumed in the reduced 

equations which follow, with R = y. 



Figure 14 Typical liquid-surface profiles 



 Adverse Slope Profiles 
 

When the channel bottom rises in the direction of flow (S0 is negative), the 
resulting surface profiles are said to be adverse. There is no normal depth, 
but the flow may be either below or above critical depth.  

 

Below critical depth the numerator is negative, and Eq. (7.6) has the form 

 

 

 

where C1 and C2, are positive constants.  

 

Here F(y) is positive and the depth increases downstream. This curve is 
labeled A3 and shown in Fig. 12.14. For depths greater than critical depth, 
the numerator is positive, and F(y) is negative; i.e., the depth decreases in 
the downstream direction. For y very large, dL/dy = 1/S0 , which is a 
horizontal asymptote for the curve.  

 

At y = yc, dL/dy is 0, and the curve is perpendicular to the critical-depth 
line. This curve is labeled A2. 



 Horizontal Slope Profiles 
  

For a horizontal channel S0 = 0, the normal depth is infinite and flow 
may be either below critical depth or above critical depth.  

 

The equation has the form 

 

 

 

                                        

For y less than critical, dL/dy is positive, and the depth increases 
downstream. It is labeled H3.  

 

For y greater than critical (H2 curve), dL/dy is negative, and the depth 
decreases downstream. These equations are integrable analytically for 
very wide channels. 



 Mild Slope Profiles 
 

A mild slope is one on which the normal flow is tranquil i.e., where 

normal depth y0 is greater than critical depth. Three profiles may 

occur, Ml, M2, M3, for depth above normal, below normal and above 

critical and below critical, respectively. 

 

For the M1 curve, dL/dy is positive and approaches 1/S0 for very large y; 

hence, the M1 curve has a horizontal asymptote downstream. As the 

denominator approaches zero as y approaches y0 , the normal depth is 

an asymptote at the upstream end of the curve.  

 

Thus, dL/dy is negative for the M2 curve, with the upstream asymptote 

the normal depth, and dL/dy = 0 at critical. The M3 curve has an 

increasing depth downstream, as shown.  



 Critical Slope Profiles 

 

When the normal depth and the critical depth are equal, the resulting 

profiles labeled C1 and C3 for depth above and below critical, 

respectively.  

 

The equation has the form 

 

 

 

with both numerator and denominator positive for C1 and negative for 

C3. Therefore, the depth increases downstream for both.  

 

For large y, dL/dy approaches 1/S0; hence, a horizontal line is an 

asymptote. The value of dL/dy at critical depth is 0.9/S0; hence, curve 

C1 is convex upward. Curve C3 also is convex upward, as shown. 



 Steep Slope Profiles 

 
When the normal flow is rapid in a channel (normal depth less than 
critical depth), the resulting profiles S1, S2, S3 are referred to as steep 
profiles:  

 S1 is above the normal and critical,  

 S2 between critical and normal, and  

 S3 below normal depth.  

 

For curve S1 both numerator and denominator are positive, and the depth 
increases downstream approaching a horizontal asymptote. For curve S2 
the numerator is negative and the denominator positive but approaching 
zero at y = y0. The curve approaches the normal depth asymptotically. The 
S3 curve has a positive dL/dy as both numerator and denominator are 
negative. It plots as shown on Fig. 14. 

       

It should be noted that a given channel may be classified as mild for one 
discharge, critical for another discharge, and steep for a third discharge, 
since normal depth and critical depth depend upon different functions of 
the discharge. 



12.9 CONTROL SECTIONS 

A small change in downstream conditions cannot be relayed upstream 
when the depth is critical or less than critical; hence, downstream 
conditions do not control the flow. All rapid flows are controlled by 
upstream conditions, and computations of surface profiles must be started 
at the upstream end of a channel. 

       

Tranquil flows are affected by small changes in downstream conditions 
and therefore are controlled by them. Tranquil-flow computations must 
start at the downstream end of a reach and be carried upstream. 

       

Control sections occur at entrances and exits to channels and at changes in 
channel slopes, under certain conditions. In Fig. 15a the flow passes 
through critical at the entrance to a channel, and depth can be computed 
there for a given discharge.  

 

In Fig. 15b a change in channel slope from mild to steep causes the flow to 
pass through critical at the break in grade. Computations proceed both 
upstream and downstream from the control section at the break in grade.  

 

In Fig. 15c a gate in a horizontal channel provides control both upstream 
and downstream from it.  



Figure 15 Channel control sections 



The hydraulic jump occurs whenever the conditions required by the 
momentum equation are satisfied. In Fig. 16, liquid issues from under a 
gate in rapid flow along a horizontal channel. If the channel were short 
enough, the flow could discharge over the end of the channel as an H3 
curve.  

 

With a longer channel, however, the jump occurs, and the resulting profile 
consists of pieces of H3 and H2 curves with the jump in between. In 
computing these profiles for a known discharge, the H3 curve is computed, 
starting at the gate (contraction coefficient must be known) and 
proceeding downstream until it is clear that the depth will reach critical 
before the end of the channel is reached.  

 

Then the H2 curve is computed, starting with critical depth at the end of 
the channel and proceeding upstream. The depths conjugate to those along 
H3 are computed and plotted as shown. 

 

The channel may be so long that the H2 curve is everywhere greater than 
the depth conjugate to H3. A drowned jump then occurs, with H2 extending 
to the gate. 

 

All sketches are drawn to a greatly exaggerated vertical scale, since usual 

channels have small bottom slopes. 



Figure 16 Hydraulic jump between two control 

sections 



10 COMPUTER CALCULATION OF GRADUALLY 

VARIED FLOW 

The program, listed in Fig. 17, calculates the steady gradually varied 
water-surface profile in any prismatic rectangular, symmetric 
trapezoidal or triangular channel.  

 

Input data include the specification of the system of units (SI or USC) 
in the first columns of the data, followed by the channel dimensions, 
discharge, and water-surface control depth on the second card.  

 

If the control depth is left blank or set to zero in data, it is 
automatically assumed to be the critical depth in the program.  

 

For subcritical flow the control is downstream, and distances are 
measured in the upstream direction. For supercritical flow the control 
depth is upstream, and distances are measured in the downstream 
direction. 



Figure 17. 

FORTRAN 

program for 

water-surface 

profiles 



The program begins with several line functions to compute the 

various variables and functions in the problem. After the necessary 

data input, critical depth is computed, followed by the normal-

depth calculation if normal depth exists.  

 

The bisection method is used in these calculations. The type of 

profile is then categorized, and finally the water-surface profile, 

specific energy, and F + M are calculated and printed. Simpson's 

rule is used in the integration for the water-surface profile. 

       

The program can be used for other channel sections, such as 

circular or parabolic, by simply changing the line functions at the 

beginning. 



 Example 10  

 

A trapezoidal channel, B = 2.5 m, side slope = 0.8, has two bottom slopes. 

The upstream portion is 200 m long, S0 = 0.025, and the downstream 

portion, 600 m long, S0 = 0.0002, n = 0.012. A discharge of 25 m3/s enters at 

critical depth from a reservoir at the upstream end, and at the 

downstream end of the system the water depth is 2 m. Determine the 

water-surface profiles throughout the system, including jump location. 

      

 Solution 

Three separate sets of data, shown in Fig. 17, are needed to obtain the 

results used to plot the solution as shown in Fig. 18.  

 

The first set for the steep upstream channel has a control depth equal to 

zero since it will be automatically assumed critical depth in the program.  

 

The second set is for the supercritical flow in the mild channel. It begins at 

a control depth equal to the end depth from the upstream channel and 

computes the water surface downstream to the critical depth.  



The third set of data uses the 2-m downstream depth as the control 
depth and computes in the upstream direction. Figure 19 shows the 
computer output from the last two data sets. 

      

The jump is located by finding the position of equal F + M from the 
output of the last two data sets. 

Figure 18 Solution to Example 10 as obtained from computer  



Figure 12.19 

Computer 

output 



12.11 FRICTIONLESS POSITIVE SURGE WAVE IN 

A RECTANGULAR CHANNEL 

In this section the surge wave resulting from a sudden change in flow 
(due to a gate or other mechanism) that increases the depth is studied. 
A rectangular channel is assumed, and friction is neglected.  

Such a situation is shown in Fig. 12.20 shortly after a sudden, partial 
closure of a gate. The problem is analyzed by reducing it to a steady-
state problem, as in Fig. 12.21.  

 

The continuity equation yields, per unit width, 

 
(12.11.1) 

 

and the momentum equation for the control volume 1 - 2, neglecting 
shear stress on the floor, per unit width, is 

 

(12.11.2) 



Figure 12.20 Positive 

surge wave in a 

rectangular channel 

Figure 12.21 Surge 

problem reduced to a 

steady-state problem 

by superposition of 

surge velocity 



By elimination of V2 in the last two equations, 

 

(11.3) 

  

In this form the speed of an elementary wave is obtained by letting y2 

approach y1, yielding 

(11.4) 

 

For propagation through still liquid V1→0, and the wave speed is c = 

√(gy) when the problem is converted back to the unsteady form by 

superposition of V = -c. 

 

In general, Eqs. (11.1) and (11.2) have to be solved by trial. The 

hydraulic-jump formula results from setting c = 0 in the two equations 

[see Eq. 11.3)]. 



 Example 11  

 

A rectangular channel 3 m wide and 2 m deep, discharging 18 m3/s, 

suddenly has the discharge reduced to 12 m3/s at the downstream end. 

Compute the height and speed of the surge wave. 

 

Solution     With Eqs. (11.1) and (11.2), 

 

 

 

Eliminating c and V2 gives 

 
 

 

After solving for y2 by trial, y2 = 2.75 m. Hence, V2 = 4/2.75 = 1.455 m/s, 

The height of surge wave is 0.75 m, and the speed of the wave is 



12 FRICTIONLESS NEGATIVE SURGE WAVE IN A 

RECTANGULAR CHANNEL 

The negative surge wave appears as a gradual flattening and lowering 

of a liquid surface. It occurs, for example, in a channel downstream 

from a gate that is being closed or upstream from a gate that is being 

opened. Its propagation is accomplished by a series of elementary 

negative waves superposed on the existing velocity, each wave traveling 

at less speed than the one at next greater depth. 

  

Application of the momentum equation and the continuity equation to 

a small depth change produces simple differential expressions relating 

wave speed c, velocity V, and depth y.  

 

Integration of the equations yields liquid-surface profile as a function 

of time, and velocity as a function of depth or as a function of position 

along the channel and time (x and t). The fluid is assumed to be 

frictionless, and vertical accelerations are neglected. 



In Fig. 22a an elementary disturbance is indicated in which the flow 

upstream has been slightly reduced. For application of the momentum 

and continuity equations it is convenient to reduce the motion to a 

steady one, as in Fig. 22b, by imposing a uniform velocity c to the left.  

 

The continuity equation is 

 

 

 or, by neglecting the product of small quantities, 

(12.1) 

 

The momentum equation produces 



Figure 12.22 Elementary wave 



After simplifying, 

(12.12.2) 

 

Equating δV/δy in Eqs. (12.12.1) and (12.12.2) gives 

 

(12.12.3) 
 
 

The speed of an elementary wave in still liquid at depth y is √(gy) and 

with flow the wave travels at the speed √(gy) relative to the flowing 

liquid. 

Eliminating c from Eqs. (12.12.1) and (12.12.2) gives 

 

 

and integrating leads to 



For a negative wave forming downstream form a gate (Fig. 12.23) by using the 

plus sign, after an instantaneous partial closure, V = V0 when y = y0, and 

 

 

After eliminating the constant, 

(12.12.4) 

 

The wave travels in the +x direction, so that 

(12.12.5) 

 

If the gate motion occurs at t = 0, the liquid-surface position is expressed by x = 

ct, or 

(12.12.6) 

 

Eliminating y from Eqs. (12.12.5) and (12.12.6) gives 

 

(12.12.7) 

which is the velocity in terms of x and t.  



Figure 23 Negative wave after gate closure 



 Example 12.12  

 

In Fig. 12.23 find the Froude number of the undisturbed flow such that the 
depth y1, at the gate is just zero when the gate is suddenly closed. For V0 = 6 
m/s, find the liquid-surface equation. 

 

 Solution 

It is required that V1 = 0 when y1 = 0 at x = 0 for any time after t = 0. In Eq. 
(12.12.4), with V = 0, y = 0, 

 

 

 

For V0 = 6, 

 

 

 

By Eq. (12.12.6) 

 

 

The liquid surface is a parabola with vertex at the origin and surface concave 
upward. 



 Example 12.13  

 

In Fig. 12.23 the gate is partially closed at the instant t = 0 so that the discharge 

is reduced by 50 percent. V0 = 6 m/s, y0 = 3 m. Find V1, y1, and the surface 

profile. 

 

 Solution 

The new discharge is 

 

 

By Eq. (12.12.4) 

 

 

Then V1 and y1 are found by trail from the last two equations, V1 = 4.24 m/s, y1 

= 2.12 m. The liquid-surface equation, from Eq. (12.12.6), is 

 

 

which holds for the range of values of y between 2.12 and 3 m. 



 Dam Break 

 

An idealized dam-break water-surface profile, Fig. 12.24 can be 

obtained from Eqs. (12.12.4) to (12.12.7). From a frictionless, 

horizontal channel with depth of water y0 on one side of a gate and no 

water on the other side of the gate, the gate is suddenly removed.  

 

Vertical accelerations are neglected. V0 = 0 in the equations, and y 

varies from y0 to 0. The velocity at any section, from Eq. (12.12.4), is 

 
(12.12.8) 

 

always in the downstream direction. The water-surface profile is, from 

Eq. (12.12.6), 

(12.12.9) 



Figure 12.24  Dam-break profile 



At x = 0, y = 4y0/9, the depth remains constant and the velocity past the 

section x = 0 is, from Eq. (12.12.8), 

 

 

 

also  independent of time.  

 

The leading edge of the wave feathers out to zero height and moves 

downstream at V = c = -2√(gy0). The water surface is a parabola with  

vertex at the leading edge, concave upward. 

 

With an actual dam break, ground roughness causes a positive surge, 

or wall of water, to move downstream; i.e., the feathered edge is 

retarded by friction. 


